Isometry Groups and Geodesic Foliations of Lorentz Manifolds. Part I: Foundations of Lorentz Dynamics

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isometry Groups and Geodesic Foliations of Lorentz Manifolds. Part Ii: Geometry of Analytic Lorentz Manifolds with Large Isometry Groups

This is part II of a series on noncompact isometry groups of Lorentz manifolds. We have introduced in part I, a compactification of these isometry groups, and called “bipolarized” those Lorentz manifolds having a “trivial ” compactification. Here we show a geometric rigidity of non-bipolarized Lorentz manifolds; that is, they are (at least locally) warped products of constant curvature Lorentz ...

متن کامل

Homogeneous Lorentz Manifolds with Simple Isometry Group

Let H be a closed, noncompact subgroup of a simple Lie group G, such that G/H admits an invariant Lorentz metric. We show that if G = SO(2, n), with n ≥ 3, then the identity component H of H is conjugate to SO(1, n). Also, if G = SO(1, n), with n ≥ 3, then H is conjugate to SO(1, n− 1).

متن کامل

Isometric actions of Heisenberg groups on compact Lorentz manifolds

We prove results toward classifying compact Lorentz manifolds on which Heisenberg groups act isometrically. We give a general construction, leading to a new example, of codimension-one actions—those for which the dimension of the Heisenberg group is one less than the dimension of the manifold. The main result is a classification of codimension-one actions, under the assumption they are real-ana...

متن کامل

Actions of Discrete Groups on Stationary Lorentz Manifolds

We study the geometry of compact Lorentzian manifolds that admit a somewhere timelike Killing vector field, and whose isometry group has infinitely many connected components. Up to a finite cover, such manifolds are products (or amalgamated products) of a flat Lorentzian torus and a compact Riemannian (resp., lightlike) manifold.

متن کامل

Flat Lorentz 3-manifolds and cocompact Fuchsian groups

Mess deduces this result as part of a general theory of domains of dependence in constant curvature Lorentzian 3-manifolds. We give an alternate proof, using an invariant introduced by Margulis [18, 19] and Teichmüller theory. We thank Scott Wolpert for helpful conversations concerning Teichmüller theory. We also wish to thank Paul Igodt and the Algebra Research Group at the Katholieke Universi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Geometric And Functional Analysis

سال: 1999

ISSN: 1016-443X,1420-8970

DOI: 10.1007/s000390050102