Isometry Groups and Geodesic Foliations of Lorentz Manifolds. Part I: Foundations of Lorentz Dynamics
نویسندگان
چکیده
منابع مشابه
Isometry Groups and Geodesic Foliations of Lorentz Manifolds. Part Ii: Geometry of Analytic Lorentz Manifolds with Large Isometry Groups
This is part II of a series on noncompact isometry groups of Lorentz manifolds. We have introduced in part I, a compactification of these isometry groups, and called “bipolarized” those Lorentz manifolds having a “trivial ” compactification. Here we show a geometric rigidity of non-bipolarized Lorentz manifolds; that is, they are (at least locally) warped products of constant curvature Lorentz ...
متن کاملHomogeneous Lorentz Manifolds with Simple Isometry Group
Let H be a closed, noncompact subgroup of a simple Lie group G, such that G/H admits an invariant Lorentz metric. We show that if G = SO(2, n), with n ≥ 3, then the identity component H of H is conjugate to SO(1, n). Also, if G = SO(1, n), with n ≥ 3, then H is conjugate to SO(1, n− 1).
متن کاملIsometric actions of Heisenberg groups on compact Lorentz manifolds
We prove results toward classifying compact Lorentz manifolds on which Heisenberg groups act isometrically. We give a general construction, leading to a new example, of codimension-one actions—those for which the dimension of the Heisenberg group is one less than the dimension of the manifold. The main result is a classification of codimension-one actions, under the assumption they are real-ana...
متن کاملActions of Discrete Groups on Stationary Lorentz Manifolds
We study the geometry of compact Lorentzian manifolds that admit a somewhere timelike Killing vector field, and whose isometry group has infinitely many connected components. Up to a finite cover, such manifolds are products (or amalgamated products) of a flat Lorentzian torus and a compact Riemannian (resp., lightlike) manifold.
متن کاملFlat Lorentz 3-manifolds and cocompact Fuchsian groups
Mess deduces this result as part of a general theory of domains of dependence in constant curvature Lorentzian 3-manifolds. We give an alternate proof, using an invariant introduced by Margulis [18, 19] and Teichmüller theory. We thank Scott Wolpert for helpful conversations concerning Teichmüller theory. We also wish to thank Paul Igodt and the Algebra Research Group at the Katholieke Universi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Geometric And Functional Analysis
سال: 1999
ISSN: 1016-443X,1420-8970
DOI: 10.1007/s000390050102